Method - This is a way of finding one root of a quadratic(or cubic)equation, essentially by trial and error, but in a more ordered way.

In questions you are given a quadratic expression and told what numerical value it is equal to.

You are sometimes given that the value of ' x ' lies between two numbers and asked that your answer be rounded to a particular number of decimal places. You may wish to revise the topic 'approximation' before proceeding.

Example - By using a 'trial \& improvement' method find the positive value of x that satisfies the equation below. X has a value between 1 and 2 . Give your answer correct to one decimal place.

$$
x^{2}-6 x-10=0
$$

Move the number part of the equation to the right, leaving terms in ' x ' on the left.

$$
\begin{aligned}
x^{2}+6 x & =10 \\
2^{2}+6(2) & =4+12=16 \\
1^{2}+6(1) & =1+6=7
\end{aligned}
$$

Remember we want the expression to equal 10. The value of the expression in the first instance comes to $\mathbf{1 6}$, while in the second instance the value is $\mathbf{7}$.

Since (16-10 = 4) and ($10-7=3$) the value of x (to give $\mathbf{1 0}$) must be a number closer to $\mathrm{x}=1$ than $\mathrm{x}=2$.

So we try $\mathrm{x}=1.4$
(1.5 is the average between $2 \& 1$, so we use $1.5-0.1$ to give a bias towards the 1).

$$
(1.4)^{2}+6(1.4)=1.96+8.4=10.36
$$

The value of x must be less than 1.4 , since 1.4 gives 10.36 (over 10).

Let's try $\mathrm{x}=1.35$

$$
(1.35)^{2}+6(1.35)=1.823+8.1=9.923
$$

The value of x must be greater than 1.35 , since 1.35 gives 9.923 (less than 10).

Let's try $\mathrm{x}=1.36$

$$
(1.36)^{2}+6(1.36)=1.85+8.16=10.010
$$

Since the value of x is to be rounded, the value of the expression in x is as close to 10 as is necessary.

So the value of x to satisfy the equation, (rounded to one decimal place) is 1.4

