Number Surds Surds	
GCSE Maths Tutor www.gcsemathstutor.com info@gcsemathstutor.com	
SF Maths Tutor~ www.gcsemaths	
Surds are mathematical expressions containing square roots. However, it must be emphasized that the square roots are 'irrational' i.e. they do not result in a whole number, a terminating decimal or a	
recurring decimal. The rules governing surds are taken from the Laws of Indices.	
rule #1 laths $T_{\sqrt{c}} \times \sqrt{d} = \sqrt{c \times d}$ $c^{1/2} \times d^{1/2} = (c \times d)^{1/2}$ thstuto	
$athsti_{\sqrt{5}\times\sqrt{3}} = \sqrt{3\times5} = \sqrt{15}$	
aths Ti $\sqrt{12} \times \sqrt{5} = \sqrt{12 \times 5} = \sqrt{60}$ $\sqrt{7} \times \sqrt{2} = \sqrt{7 \times 2} = \sqrt{14}$	
$\frac{\sqrt{c}}{\sqrt{d}} = \sqrt{\frac{c}{d}}$ $\frac{c^{1/2}}{d^{1/2}} = \left(\frac{c}{d}\right)^{1/2}$	
examples $\frac{\sqrt{15}}{\sqrt{5}} = \sqrt{\frac{15}{5}} = \sqrt{3}$ $\frac{\sqrt{24}}{\sqrt{5}} = \sqrt{\frac{24}{5}} = \sqrt{4} = 2$	
E Math $\frac{\sqrt{18}}{\sqrt{3}} = \sqrt{\frac{18}{3}} = \sqrt{6}$ ' www.gcsemathstu	

Number	Stutto <u>Surds</u>	topic notes	
GCSE Maths Tutor	www.gcsemathstutor.com	info@gcsemathstutor.com	
Some Useful Expressions			
expression #1			
	$(c+d)^{2} = (c+d)(c+d)$ = $c^{2} + cd + cd + d^{2}$ = $c^{2} + 2cd + d^{2}$		
	$(c + \sqrt{d})^2 = (c + \sqrt{d})(c + \sqrt{d})$ $= c^2 + c\sqrt{d} + c\sqrt{d} + c\sqrt{d}$		
	$=c^2+2c\sqrt{d}+d$		
	$(5+\sqrt{2})^2 = (5+\sqrt{2})(5+\sqrt{2})$ = 5 ² + 5\sqrt{2} + 5\sqrt{2} + 2 = 5 ² + 10\sqrt{2} + 2 = 25 + 10\sqrt{2} + 2		
	$= 27 + 10\sqrt{2}$		

expression #2 - (the difference of two squares) $(c+d)(c-d) = c^{2} + cd - cd + d^{2}$ $= c^2 - d^2$ $\frac{(c+\sqrt{d})(c-\sqrt{d})}{2} = c^2 + c\sqrt{d} - c\sqrt{d} - (\sqrt{d})^2$ $= c^2 - d$

$$(7 + \sqrt{3})(7 - \sqrt{3}) = 7^2 - (\sqrt{3})^2$$

= 49 - 3
= 46

~GCSE Maths Tutor~ www.gcsemathstutor.c

Number	Stutio <u>Surds</u> M	C G C topic notes	
GCSE Maths Tutor	www.gcsemathstutor.com	info@gcsemathstutor.com	

n~GCSE Maths Tutor~ www.gcsemathstutor

<u>Rationalising Surds</u> - This is a way of modifying surd expressions so that the square root is in the numerator of a fraction and not in the denominator.

The method is to multiply the top and bottom of the fraction by the square root.

athstu ⁵ ,	$\frac{5\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}} = \frac{5\times\sqrt{3}}{3}$ 4 aths Tutor~ www.gc
CSE Ma ⁸ ,	$\frac{8\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}} = \frac{8\times\sqrt{5}}{5}$ w.gcsemathstutor.con
gcsematnstuto	$\frac{7 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{7 \times \sqrt{2}}{2}$ r.com~GCSE Maths Tutor~ w

SE Maths Tutor~ www.gcsemathstutor.com

athstutor.com~GCSE Maths Tutor~ www.gcs

Rationalising expressions using the 'difference of two squares'

Remembering that : $(c + \sqrt{d})(c - \sqrt{d}) = c^2 - d$ from 'useful expressions' above.

-GCSE Maths Tutor~ www.gcsemathstutor.c

nathstutor.com~GCSE Maths Tutor~ www.go

Number Math	Stutto <u>Surd</u>	<u>s</u> om~GC	topic notes	
GCSE Maths Tutor	www.gcsemathstu	tor.com info@gcs	emathstutor.com	
Example #1 simplify				
	aths $\frac{2+\sqrt{2}}{2-\sqrt{2}}$	tor~ w\		
multiplying top and bottom	by ^(2+√5)			
	$\frac{(2+\sqrt{5})(2+\sqrt{5})}{(2-\sqrt{5})(2+\sqrt{5})}$			
gcsemathstutor	$=\frac{2^2+2\sqrt{5}+2\sqrt{5}+5}{2^2-(\sqrt{5})^2}$	CSE Ma		
SE Maths Tutor	$=\frac{4+4\sqrt{5}+5}{4-5}$			
thstutor.com~(= 9 + 4√5 -1 = -9 - 4√5			

v.gcsemathstutor.com~GCSE Maths Tutor~ v

~GCSE Maths Tutor~ www.gcsemathstutor.c

nathstutor.com~GCSE Maths Tutor~ www.go

www.gumber math	Stute <u>Surds</u>	GCS topic notes	
GCSE Maths Tutor	www.gcsemathstutor.com	info@gcsemathstutor.com	
Example #2 – rationalise			
	$\frac{2}{6+3\sqrt{5}}$ tor		
multiply top and bottom b	GCSE Maths		
CSE Maths Tt $\frac{2}{(6+2)}$	2(6 - 3√5) 3√5)(6 - 3√5)		
gcsemathstu ⁼ ¹²⁻	$\frac{-6\sqrt{5}}{(3\sqrt{5})^2}$		
SE Maths Tu ^{$=\frac{12}{6^2-1}$}	$\frac{-6\sqrt{5}}{(3\sqrt{5})^2} = \frac{12 - 6\sqrt{5}}{6^2 - (3 \times 3 \times \sqrt{5} \times \sqrt{5})}$		
thstutor.con = $\frac{12}{6^2}$	$\frac{6\sqrt{5}}{(9\times5)} = \frac{12-6\sqrt{5}}{36-45} = \frac{12-6\sqrt{5}}{-9} = -$	<u>(12-6√5)</u> 9 Dr~ www	
³⁽⁴ www.gcsemaths	$\frac{4-2\sqrt{5}}{9} = -\frac{(4-2\sqrt{5})}{3} = \frac{-4+2\sqrt{5}}{3}$	<u>5</u> GCSE Maths T	

GCSE Maths Tutor~ www.gcsemathstutor.c

nathstutor.com~GCSE Maths Tutor~ www.go

Number 1000 Number

www.gcsemathstutor.com info@gcsemathstutor.com GCSE Maths Tutor

Reduction of Surds - This is a way of making the square root smaller by examining its squared

factors and removing them. ~GCSE Maths Tutor~ www.gcsemath

 $\sqrt{18} = \sqrt{(3 \times 3) \times 2} = \sqrt{3 \times 3} \times \sqrt{2} = 3\sqrt{2}$

athstutor.cc $\sqrt{48} = \sqrt{(2 \times 2) \times (2 \times 2) \times 3} = 2 \times 2\sqrt{3} = 4\sqrt{3}$ Tutor~ www.gc

CSE Maths T^{v63}=v^{(3×3)×7}=3v⁷

Rational and Irrational Numbers - In the test for rational and irrational numbers, if a surd

has a

square root in the numerator, while the denominator is '1' or some other number, then the number represented by the expression is 'irrational'.

athstutor.com~GCSE Maths Tutor~ www.gcs examples of irrational surds:

www.gcsemathst $\frac{3+\sqrt{3}}{2}$, $\frac{5+\sqrt{7}}{2}$, $\frac{6-\sqrt{2}}{5}$ GCSE Maths Tuto