The function.... $\mathbf{y}=\mathbf{f}(\mathbf{x})+\mathbf{k}$

$$
y=x^{2}
$$

$$
y=x^{2}+k
$$

When $x=0, y=k$. So the curve is moved(translated) by ' k ' in the y-direction.

In vector terms the translation of the curve is

The function.... $\mathbf{y}=\mathbf{f}(\mathbf{x}+\mathbf{k})$

$$
y=x^{2}
$$

$$
y=(x+k)^{2}
$$

This is best understood with an example.
Let k be equal to some number, say 3 . Adding 3 into the original equation, we have:

$$
\begin{aligned}
y & =f(x+3) \\
y & =(x+3)^{2} \\
y & =(x+3)(x+3) \\
\text { when } y & =0, x=-3
\end{aligned}
$$

So the curve moves -3 to the left, to where $y=0$. That is $-k$ to the left.

In vector terms the translation of the curve is

$$
\binom{-k}{0}
$$

The function.... $\mathbf{y}=\mathbf{k f}(\mathbf{x})$

$$
y=x^{2}
$$

$$
y=k(x)^{2}
$$

In our example, y increases by a factor of ' k ' for every value of x.

Example - let $\mathrm{k}=5$

$$
\begin{array}{lll}
& \frac{y=(x)^{2}}{y=(1)^{2}=1} & y=5(x)^{2} \\
x=1 & y=5(1)^{2}=5 \\
x=2 & y=(2)^{2}=4 & y=5(2)^{2}=5(4)=20 \\
x=3 & y=(3)^{2}=9 & y=5(3)^{2}=5(9)=45
\end{array}
$$

So for each value of x, the value of y is 5 times its previous value. The curve is stretched in the y-direction by a factor of 5 . That is by a factor of k.

The function.... $\mathbf{y}=\mathbf{f}(\mathbf{k x})$

$$
y=x^{2}
$$

$$
y=(k x)^{2}
$$

In the above, when $x=1, y=1$. However, in the second function when $x=1, y$ is a higher value. Look at the example below for $x=1$ and other values of x.

Remember, in this function the constant ' k ' multiplies the x-value inside the function.

Example \#1 - let $k=4$

$$
\begin{array}{lll}
& \frac{y=(x)^{2}}{y=(1)^{2}=1} & y=(4 x)^{2} \\
x=1 & y=(4 \times 1)^{2}=16 \\
x=2 & y=(2)^{2}=4 & y=(4 \times 2)^{2}=64 \\
x=3 & y=(3)^{2}=9 & y=(4 \times 3)^{2}=144
\end{array}
$$

You will notice that the y-value jumps by a factor of 16 for each increasing x-value. The y value increases by a factor of 4 squared.

With more complicated functions the value of y for a given value of x, increases once more, narrowing the curve in the x-direction(or stretching in the y-direction).

Example \#2 a more complicated function with $k=4$

$$
\begin{array}{llll}
& \frac{y=(x)^{2}-2(x)+3}{y=x^{2}-2 x+3} & & y=(4 x)^{2}-2(4 x)+3 \\
x=1 & y=1-2+3 & & y=16 x^{2}-8 x+3 \\
x=1 & y=2 & & y=16(1)-8(1)+3 \\
x=1 & y=2 & y=16-8+3 \\
& y=11
\end{array}
$$

The function $\ldots \mathbf{y}=\boldsymbol{\operatorname { s i n }}(\mathbf{x}+\mathbf{k})$

Here the graph is translated by the value of k, to the left
So when k=90 deg. The curve moves horizontally 90 deg. (looking at the red dot, from 270 deg. to 180 deg.)

$$
y=\sin (x)
$$

The function $\ldots \mathbf{y}=\boldsymbol{\operatorname { c o s }}(\mathbf{x}+\mathbf{k})$

This is exactly the same as for the sine function.
The graph is translated by the value of k, to the left
So when $\mathrm{k}=90$ deg. The curve moves horizontally 90 deg. (looking at the red dot, from 180 deg. to 90 deg.)

The function.... $\mathbf{y}=\boldsymbol{\operatorname { s i n }}(\mathbf{k x})$

Here the graph is squeezed horizontally(concertinered) by a factor of k.

In our example below, $k=2$. So one whole wavelength of 360 deg . is reduced to 180 deg .

Conversely you may think of any value of x being halved(red spot reading changes from 270 deg. to 135 deg)

$$
y=\sin (x)
$$

$$
y=\sin (2 x)
$$

The function....y= $\boldsymbol{\operatorname { c o s }}(\mathbf{k x})$
As with the previous function, the graph is squeezed horizontally(concertinered) by a factor of k.

In our example below, $k=2$. So one whole wavelength of 360 deg . is reduced to 180 deg .

Conversely you may think of any value of x being halved(red spot reading changes from 180 deg. to 90 deg).

$$
y=\cos (x)
$$

$$
y=\cos (2 x)
$$

