Direct proportion - If y is proportional to x , this can be expressed as:

$$
\begin{aligned}
& y \propto x \\
& y=k x
\end{aligned}
$$

where k is 'the constant of proportionality'
A very useful equation can be obtained if we consider two sets of values of x and y.

$$
\begin{array}{lll}
x_{1} & y_{1} & y_{1}=k x_{1} \\
x_{2} & y_{2} & y_{2}=k_{2} \\
& \frac{y_{1}}{y_{2}}=\frac{x_{1}}{x_{2}}
\end{array}
$$

There are 4 values here. Questions on direct proportion will give you 3 of these values and you will be required to work out the 4th.

Example \#1 - A car travels 135 miles on 15 litres of petrol. How many miles will the car travel if it uses 25 litres?

$$
\begin{aligned}
& y_{1}=135 \text { miles }, \quad x_{1}=15 \text { lites } \\
& y_{2}=\text { ? } \quad x_{2}=25 \text { litres } \\
& \frac{y_{1}}{y_{2}}=\frac{x_{1}}{x_{2}} \\
& \frac{135}{y_{2}}=\frac{15}{25} \\
& 135 \times 25=15 y_{2} \quad \text { cross multiplying } \\
& \frac{135 \times 25}{15}=y_{2} \\
& y_{2}=\frac{9 \times 25}{1}=225
\end{aligned}
$$

Answer: 225 miles

Example \#2 - The speed v of a rocket is directly proportional to the time t it travels. After 3 seconds its speed is 150 metres per second(m / s). How long after take-off will the speed reach $550 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
& y_{1}=150 \mathrm{~m} / \mathrm{s}, \quad x_{1}=3 \text { seconds } \\
& y_{2}=550 \mathrm{~m} / \mathrm{s}, \quad x_{2}=? \\
& \frac{y_{1}}{y_{2}}=\frac{x_{1}}{x_{2}} \\
& \frac{150}{550}=\frac{3}{x_{2}} \\
& 150 x_{2}=550 \times 3 \quad \text { cross multiplying } \\
& x_{2}=\frac{550 \times 3}{150}=11
\end{aligned}
$$

Answer: 11 seconds

Inverse proportion- If y is inversely proportional to x , this can be expressed as:

$$
\begin{aligned}
& y \propto \frac{1}{x} \\
& y=\frac{k}{x}
\end{aligned}
$$

where k is 'the constant of proportionality'
Another very useful equation can be obtained if we consider two sets of values of x and y .

$$
\begin{array}{lll}
x_{1} & y_{1} & y_{1}=\frac{k}{x_{1}} \\
x_{2} & y_{2} & y_{2}=\frac{k}{x_{2}} \\
& \frac{y_{1}}{y_{2}}=\frac{x_{2}}{x_{1}} & \text { dividing (i) by (ii }
\end{array}
$$

As with the equation for direct proportion, there are 4 values here. Questions on inverse proportion will give you 3 of these values and you will be required to work out the 4 th.

Example - It is assumed that the value of a second-hand car is inversely proportional to its mileage. A car of value $£ 1200$ has a mileage of 50,000 miles. What will its value be when it has travelled 80,000 miles?

$$
\begin{aligned}
& \begin{array}{l}
y_{1}=£ 1200, \\
y_{2}=?
\end{array} \quad x_{1}=50,000 \text { miles } \\
& \frac{y_{1}}{y_{2}}=\frac{x_{2}}{x_{1}} \\
& \frac{1200,000 \text { miles }}{y_{2}}=\frac{80000}{50000} \\
& 1200 \times 50000=80000 y_{2} \quad \text { cross multiplying } \\
& \frac{1200 \times 50000}{80000}=y_{2} \\
& y_{2}=\frac{1200 \times 5}{8}=150 \times 5=750
\end{aligned}
$$

Answer: $£ 750$

Variation - This covers a number of proportionalities involving 'square', 'square root', 'cube root', 'cube', inverse or a combination of these.

The first thing you need to do is to write down the proportion in symbols and then as an equation. Here are some examples:

'a' is proportional to 'b' squared	$a \propto b^{2}$	$a=b^{2}$
'c' is inversely proportional to 'd' cubed	$c \propto \frac{1}{d^{3}}$	$c=\frac{k}{d^{3}}$
'e' varies as the square root of 'f'	$e \propto \sqrt{f}$	$e=k \sqrt{f}$
'g' is proportional to 'h' cubed	$g \propto h^{3}$	$g=b^{3}$
'i' varies as the inverse of 'j' squared	$i \propto \frac{1}{j^{2}}$	$i=\frac{k}{j^{2}}$

In questions on variation you are usually given a pair of x, y values and a proportionality. You are given one further value of x or y, and are required to calculate the missing value.

- find the 'constant of proportionality'(k) using the first 'xy' values and write down the proportionality as an equation
- put the new value of x or y in the equation and solve for the missing value

Example - If the value of y is proportional to the square of x , and x is 4 when y is 96 ,

 what is the value of y when x is 13 ?$$
\begin{array}{ll}
x_{1}=4, & y_{1}=96 \\
y \propto x^{2}, & y_{1}=k x_{1}^{2} \\
96=k\left(4^{2}\right) \\
96 & =k(16) \\
& \frac{96}{16}=k, k=\frac{96}{16}=6 \\
& \frac{y=6 x^{2}}{y_{2}}=k x_{2}^{2} \\
x_{2}=13 \\
& y_{2}=6\left(13^{2}\right), y_{2}=6(169) \\
& y_{1}=1014
\end{array}
$$

Curve Sketching- Try to remember the proportionality that matches the shape of the curve.

