

General Certificate of Secondary Education

Mathematics 4301

Specification A

Paper 2 Higher

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

Μ	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
M dep	A method mark dependent on a previous method mark being awarded.
Bdep	A mark that can only be awarded if a previous independent mark has been awarded.
ft	Follow through marks. Marks awarded following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$

Paper 2H

Г

Q	Answer	Mark	Comments
1(a)	150	B1	
1(b)	10	B1	
1(c)	Their '150' ÷ 3	M1	ft Their value from (a)
	50	A1ft	SC Their 150 ÷ 180 or their 150 ÷ 170 or 150 ÷ 2.83 B1
2	580 ÷ 51 or 370 ÷ 32	M1	Allow 'scaling' providing both calculations are scaled
	11.3 or 11.5	A1	Accept 11.4 or 11.6 or scaled digits NB could compare 11 and 12 after working
	Beryl and both correct answers above	A1	
3 (a)	5.52941(17)	B1	
3(b)	5.5 or 5.53	B1ft	ft Value in (a) if >3 sf and rounded to 2 or 3 sf
4(a)	4x + 5 = 15	M1	
	2.5	A1	oe
4(b)	3y - 2 = 10	M1	oe $6y - 4 = 20$
	4	A1	
5(a)	Rotation (only)	B1	Any reference to a double transformation do not award this mark
	(0, 0) or origin or O	B1	
	90° (anticlockwise)	B1	Quarter turn or 270° clockwise.
5(b)	Correct reflection	B2	B1 For reflection in $x = -1$
			B1 For $y = -1$ drawn
			B1 For shape A reflected in $y = -1$

Q	Answer	Mark	Comments
6(a)	58	B1	
6(b)(i)	30	B1	
6(b)(ii)	$\frac{64}{200}, \frac{32}{100}, \frac{16}{50}, \frac{8}{25}, 32\%, 0.32$	B1	Note % sign needed with 32%
7(a)	x(x+3), (x+0)(x+3)	B1	
7(b)	$2a^2b(2-3ab)$	B2	B1 For $2ab(2a - 3a^{2}b)$ $a^{2}b(4 - 6ab)$ $2a^{2}(2b - 3ab^{2})$ $(2a^{2}b - 0)(2 - 3ab)$ $-2a^{2}b(3ab - 2)$ $4a^{2}b(1 - 1.5ab)$
8(a)	126	B1	
8(b)	$\frac{1}{2} \times 5.5 \times (4+12)$	M1	oe
	44	A1	
8(c)	Interior angle 108° or exterior angle 72°	B1	
	$360 \div$ exterior angle or (3 × 180 ÷ interior angle)	B1	
	5	B1Dep	This can only be awarded if at least one of previous Bs awarded
9(a)	7x-6	B1	Must be simplified
	4x + 1 + their '7x - 6'	Blft	
0(1)			11x - 5 Must be simplified
9(b)	5y or 5y - 0	B1	
	4y - 1 + their 5y' = 5	M1	9y - 1 = 5

$\frac{2}{3}$	A1ft	oe Decimals 0.66, 0.67 minimum, $\frac{6}{9}$
5		NB ft Decimal answers must be to 2dp or better

Q	Answer	Mark	Comments
10	4	B2	B1 for any number that can be cancelled to the form 1: <i>n</i> e.g. 10, 16, 22,
			NB If answer seen and ratio quoted as 1:2 and 2 given as answer count this as contradictory further work and give B1
			SC If clearly indicated that the final total of red balls is 12 then give B1
			eg, 6:12 with no answer given

11	$x^2 - 3x + 4x - 12$	M1	Allow one sign or arithmetic error but must have 4 terms including x^2 , 2 terms in x and a constant term
	$x^2 + x - 12$	A1	

12	$6^2 + 9^2$	M1	$6^2 + 9^2 - 2 \times 6 \times 9 \times \cos 90$
	√117	M1Dep	M1 For squaring and adding then showing need to square root NB $\sqrt{(12 + 18)} = \sqrt{30}$ is M0
	3√13 or 10.8	A1	Do not accept 11 without working (minimum $6^2 + 9^2$)

Q	Answer	Mark	Comments
13(a)	Attempt at $\sum xf$ for 5 values (25 × 16 + 35 × 38 + 45 × 26 + 55 × 14 + 65 × 6)	M1	Allow one numerical or copy error but must show the intention to total 5 values
	All 5 values correct 400, 1330, 1170, 770, 390	A1	The calculated values must be seen for this mark NB 400, 1730, 2900, 3670, 4060 imply correct values
	Indication that $\sum x f(4060)$ is divided by 100	B1Dep	
13(b)(i)	125	B1	1.25 m (must cross out cm and replace with m)
13(b)(ii)	140.6	B1	
13(c)(i)	Frequency polygon plotted at (125, 16), (135, 38), (145, 26), (155, 14), (165, 6)	B2	Ignore any lines before 125 or after 165 –1 eeoo SC Histogram B1
13(c)(ii)	Distributions same or similar Range the same Same spread	B1	oe Accept 'correlation' 'trend' or 'pattern with qualifier' as references to distribution
13(c)(ii)	Boys taller (on average) Boys taller by about 10 cm	B1	oe Must be a comparison
14(a)	Attempt to find gradient	M1	Triangle drawn on graph $\frac{3}{2}$ or $\frac{2}{3}$ 2:3, 3:2 or equivalent
	$\frac{3}{2}((x)-1)$	A1	1.5 or an equivalent fraction. Condone <i>x</i>
14(b)	y = 'their gradient' $x - 1$	B1ft	$y = \frac{3}{2}x - 1y$ oe must have $y =$
14(c)	Negative reciprocal of their gradient	B1ft	$-\frac{2}{3}$ oe eg, $\frac{1}{1.5}$ ignore any x eg, $\frac{1}{1.5}$ x
14(d)	y = 'their 14c' $x + 8$	B1Dep ft	This mark is dependent on 14(c) being awarded but gradient must be given as a rational number, 0.6 or a 2 dp value or better $y = -\frac{2}{3}x + 8$ oe must have $y =$ $y - 8 = -\frac{2}{3}(x - 0), 3y = -2x + 24$

Q	Answer	Mark	Comments
15(a)	$-2x \ge 2$	M1	$-2 \ge 2x$ Allow one sign/rearrangement error eg, $6x \ge 2$, $-2x \ge 8$ etc Allow > or < at this stage for M1 but take it as one error Only allow = if 'recovered' by putting an inequality (\ge , \le , > or <) back in answer correctly
	$x \leq -1$	A1	$-1 \ge x \text{ or } x = \le -1 \text{ but not } x = < -1.$ Do not accept if inequality replaced with $> \text{ or } <$
15(b)	$y > -3, y \ge -3, -3 < y, -3 \le y$	B1	
15(c)	Any area above line shaded and reference/clear demonstration to testing point	B1	eg, 'I tested a point' or $2 \times 0 - 3 \times 0 = 0 < 12$
16	Sight of 0.89 and used correctly as a multiplier	B1	 NB Allow rounding up/down or truncation ie, values should be within ±10 of the actual value NB To make marking easy if final value for 10 years is in range 77945 - 77890 and/or final value for 11 years is in range 69370 - 69400 assume values have been evaluated to a sufficient accuracy.
	250 000 x 0.89 ⁿ	M1	Any value of $n > 1$
	<i>n</i> = 10 (2018) gives 77945 - 77980	A1	
	<i>n</i> = 11 (2019) gives 69370 - 69400, so 11 years	A1	 Accept references to almost 11 years, 10 years 11 months with values seen. NB Accept 10 years on answer line if all working seen as it does 'take' 10 years before level falls below 70000

17	Sight of sine	M1	Use of cos if 17° clearly marked
	13 ÷ sin 73	M1	$13 \div \cos 17$
	13.6, 13.59	A1	Allow 14 with working

Q	Answer	Mark	Comments
10		DI	
18	Circles drawn centre A with radii 5 cm and 7 cm (±1 mm)	B1	
	Bearings of 060 and 070 drawn from B (±1°)	B1	B1 for one arc and one ray within tolerance
	Correct region identified	B1	

19	Multiplying by 100, 10000 etc.	M1	7.27272
	$x = \frac{7.2}{99}$	A1	oe
	$\frac{4}{55}$	A1	

20	$\frac{-(3) \pm \sqrt{(3)^2 - (4)(2)(-7)}}{2(2)}$	M1	oe Allow sign error for –4 <i>ac</i> only
	$\frac{-3 \pm \sqrt{65}}{4}$	A1	
	1.27 or –2.77	A1	SC If formula used with only positive square root leading to 1.27 B1

21	$10^2 + 12^2 - 2 \times 10 \times 12 \times \cos 78$	M1	
	194.1	A1	$4 \times \cos 78$ is A0
	13.9	A1	Accept 14 if working seen.

Q	Answer	Mark	Comments
22(a)	Calculation of frequency densities At least 4 correct	M1	eg, 1.4, 2.7, 8.2, 11.6, 7, 0.9 Accept values in proportion e.g 14, 27, 82 etc
	Correct histogram with heights in proportion and widths correct and correctly labelled	A1	Label on vertical axis of fd, frequency density or frequency per unit width or frequency/class width or a 'key' showing an area equal to a frequency. ie, 1 (cm) square = 10
		A1	Correct plotting
22(b)	56 or 57 or 58	B1	
23	$\pi r l + \pi r^2$ or $4\pi r^2$	M1	SA cylinder $2\pi r^2 + \pi r^2 + \pi r^2$ NB Use of <i>h</i> in SA of cylinder is M0
	$\pi r l + \pi r^2 = 4\pi r^2$	M1	
	l = 3r	A1	
24(a)	<i>BC</i> = 13	B1	$DF = \sqrt{208}$
	$BD = \sqrt{(8^2 + (BC)^2)} (=\sqrt{233})$	M1	$BD = \sqrt{(5^2 + (DF)^2)}$
	<i>BD</i> = 15.3 or 15.26	A1	
24(b)	Angle $BDF = \sin^{-1}(5 \div BD)$ sin $BDF = (5 \div BD)$	M1	DF = 14.4(2) and Angle $BDF = \tan^{-1}(5 \div DF)$ $\tan BDF = (5 \div DF)$
	19, 19.1,	A1ft	NB If their values used in cos rule or other trig ratios then check accuracy by working out angle $BDF = \sin^{-1}(5 \div \text{their } BD)$ to an accuracy of 1 dp. If not accurate A0

Q	Answer	Mark	Comments
25(a)	10.5, 10.499 10.49	B1	Note that for the 99 dot dot dot answer at least 2 nines and 2 dots required ie, 10.49 or 10.499. are B0
25(b)	$(2.35 <) u \le 2.45$ (9.5 <) $t \le 10.5$ or their value in (a) (0.45 <) $a \le 0.55$	B2	 B1 2 out of 3 correct (only upper limits needed) Do not count as errors not seeing or incorrect lower limits NB Their value from (a) must be an attempt at an upper limit NB Recurring values are OK eg, 2.449 or 2.4499 (minimum for recurrence is two 9s and dot dot)
	$(2.45) \times (10.5) + (0.5)(0.55)(10.5)^2$	M1	M1 For their upper limits eg, $(2.44)(10.4) + (0.5)(0.54)(10.4)^2$ is M1 M0 If formula used incorrectly eg, $(0.5 \times a \times t)^2$ or $0.5 \times (at)^2$
	56, 56.0, 56.04	A1ft	ft On 2 correct upper limits only from 2.45, 10.5 and 0.55ft Answers must be to at least 3 sf

26(a)	$\frac{n+1}{n+2}$	B1	oe $\frac{n+1}{n+1+1}$
26(b)	$\frac{n+1}{n+2} - \frac{n}{n+1}$ or their (a) if in terms of $n - \frac{n}{n+1}$	M1	oe $\frac{n}{n+1} - \frac{n-1}{n}$ NB As this is a difference this can be reversed
	$\frac{(n+1)(n+1) - n(n+2)}{(n+2)(n+1)}$	A1	oe $\frac{n^2 - (n + 1)(n - 1)}{n(n + 1)}$ NB As this is a difference this can be reversed
	Clear demonstration that numerator can be simplified to 1 eg, $(n^2 + 2n + 1) - (n^2 + 2n) = 1$	A1	$n^2 - (n^2 - 1) = 1$ NB If reversed must be recovered, not fiddled, for this mark